Enhancing Sustainability of the Software Life Cycle via a Generic Knowledge Base

Julia Fischer, Stefan Naumann, Markus Dick

This presentation corresponds to the following paper:

The project “Green Software Engineering” (GREENSOFT) is sponsored by the German Federal Ministry of Education and Research under reference 17N1209. The contents of this document are the sole responsibility of the authors and can under no circumstances be regarded as reflecting the position of the German Federal Ministry of Education and Research.
Motivation

- IT plays a double-edged part concerning the challenges of sustainable development
- Positive
 - Improvement of processes
 - Dematerialization of physical goods
- Negative
 - Consumption of more and more energy and natural resources
- Contribution: development and usage of software itself in a resource-saving way or usage of software to save energy
Outline

I. Problem Description

II. Requirements and Usage Scenarios

III. Model Overview and Software Architecture

IV. Exemplary Articles

V. Summary & Outlook
I. Problem Description
- Much information to reduce energy consumption in the area of ICT hardware
- Objectives of the knowledge base
 - To support people in optimizing their software products
 - Positive effects should be increased
 - Negative effects should be decreased
- Orientation on the software lifecycle, which is known from eco-design principles
II. Requirements and Usage Scenarios
Requirements

- Support to resolve different problems, submit request, supply users with articles
- Actor roles with different demands and expectations concerning the search results
 - Developer
 - Administrator
 - User
- The knowledge base should be generic and extensible
- Users should write their own articles, rate and edit the articles
Usage Scenarios

- Developer’s Perspective
 - A software developer in a company that develops software solutions in the area of logistics
 - Wants to have articles for the efficient usage of his software
 - Daily use of the article system
 - Wants to differentiate between various categories
 - Needs some functional blocks to build logistic methods
Usage Scenarios

- End User's Perspective
 - She studies environmental biology at the University of Bremen
 - Usage of the Internet for researches for term papers and seminar theses
 - To get help on methods of a resource saving search in the Internet
 - Expects different categories
 - Opportunity to select different skill levels according to her expertise
III. Model Overview and Software Architecture
The main components of the model are a database for managing articles, a search engine, a news service, and the different user roles.

The information is structured in an independent data exchange format. In the overview of the model, one gets a first impression of the data structure by means of a domain data model.

The consumers are differentiated in registered and unregistered users. Registered users have more options to interact with the system. They can search via the Internet browser or an application in an independent development environment. All users have two different possibilities for their search entry. They can use the standard search with a simple search field or the advanced search with e.g. different categories and the favorite language. The usage of the stored profiles enables registered users to use a faster and more accurate search.

The profiles are necessary for users, who want to search regularly for a special problem considering the software lifecycle or dependent systems. With the profile, they save the time filling out the attributes in the advanced search. The mentioned usage scenarios have shown that the use of the article system differentiates according to the user and the expected result.

Furthermore, registered users can take the role of an author. They can write own articles to fill the database. Before the article is usable for other users, it is reviewed by the authority board to guarantee high quality and correct information. Additionally, they can edit and expand articles from other users or add translations to enhance the usability of the system.

The news service offers a RSS feed and a mail service. The consumer will be informed about latest entries or news considering the article system. Moreover, they can contact other users to ask questions to get more detailed information, or to solve problems when using an article.
Four-tier architecture with a client side presentation layer, a server side presentation layer, the business logic and a data management layer

First layer: two parts of presentation (via web browsers and plug-ins for IDE)

Second layer: the server side presentation layer includes JavaServer Faces to build the server-side user interfaces, Java Servlets and a Java Web service to realize the usage of the system via the IDE.

Third layer: full text search engine, user and article management. The full text search will be realized with parts of the open source project Lucene Java, a Java library to create and search through indices, and Solr, a search server for full text search. Both technologies will be complemented by a thesaurus to enable the search for related problems, similar spellings, and different words with the same meaning

Fourth layer: information in a XML database, relational database which includes among other things the profiles, accounts, user roles and the life cycle model
IV. Exemplary Articles
This article is especially for web developers.
This article deals with the configuration of web browsers and is intended to be used by end users.
A simple prototype was developed by 3 students.
V. Summary and Outlook
Summary

- Development of software in a resource-saving way is an important field of research
- It helps to reduce energy consumption and environmental impact
- The knowledge base is a good opportunity to use and to expand the potentials of Green IT
Outlook

- Our next steps are to create screen flows for the user interface and to start the implementation
- The subsequent user acceptance test will follow
- For the future, we plan to evaluate the platform to find out, which articles are particularly efficient
The project “Green Software Engineering” (GREENSOFT) is sponsored by the German Federal Ministry of Education and Research under reference 17N1209.

The contents of this document are the sole responsibility of the authors and can under no circumstances be regarded as reflecting the position of the German Federal Ministry of Education and Research.